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ABSTRACT 

We report on observations of the iron K line in the nearby Seyfert 1 galaxy, NGC 
3783, obtained in a long, 2 orbit (- 240 ks) XMM-Newton observation. The line profile 
obtained exhibits two strong narrow peaks at 6.4 keV and at 7.0 keV, with measured 
line equivalent widths of 120 and 35 eV respectively. The 6.4 keV emission is the 
Kct line from near neutral Fe, whilst the 7.0 keV feature probably originates from a 
blend of the neutral Fe KP line and the Hydrogen-like line of Fe at 6.97 keV. The 
relatively narrow velocity width of the K a  line (5 5000 km s-'), its lack of response 
to the continuum emission on short timescales and the detection of a neutral Compton 
reflection component are all consistent with a distant origin in Compton-thick matter 
such as the putative molecular torus. A strong absorption line from highly ionized iron 
(at 6.67 keV) is detected in the time-averaged iron line profile, whilst the depth of the 
feature appears to vary with time, being strongest when the continuum flux is higher. 
The iron absorption line probably arises from the highest ionization component of 
the known waxm absorber in NGC 3783, with an ionization of log - 3 and column 
density of NH - 5 x cm-2 and may originate from within 0.1 pc of the nucleus. A 
weak red-wing to the iron K line profile is also detected below 6.4 keV. However when 
the effect of the highly ionized warm absorber on the underlying continuum is taken 
into account, the requirement for a relativistic iron line component from the inner disk 
is reduced. 
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1. Introduction 

NGC 3783 is a bright (V=13 mag), nearby (z=0.00973), Seyfert 1 galaxy, which was first 
detected in X-rays in the Ariel-V all sky survey (McHardy et al. 1981) and subsequently in the 
high Galactic latitude survey conducted by HEAO-1 (Piccinotti et al. 1982). Since these early 
X-ray detections, there have been many observations of NGC 3783 in the X-ray band. A ROSAT 
observation of NGC 3783 showed evidence for a ionized absorber in the soft X-ray spectrum 
(Turner et al. 1993), which was confirmed during ASCA observations (George, Turner & Netzer 
1995; George et al. 1998). Subsequent high resolution grating observations of NGC 3783 with 
Chandra and Xh4M-Newton (Kaspi et al. 2000,2001,2002; Blustin et al. 2002; Behar et al. 2003) 
have revealed the soft X-ray absorber with unprecedented accuracy and resolution. Indeed the 
recent 900 ks observation obtained with the Chandra High Energy Transmission Grating Spec- 
trometer (HETGS) probably represents the best soft X-ray spectrum (in terms of the combination 
of spectral resolution and signal to noise) obtained on any AGN to date, with the spectrum showing 
numerous absorption lines from all of the abundant elements between C and Fe, over a wide range 
of ionization states (Kaspi et al. 2002; Krongold et al. 2003; Netzer et al. 2003). 

Our primary aim in this paper is to study in detail the iron K line profile of NGC 3783. The 
iron K a  emission line diagnostic in AGN first became important during the Ginga era, showing 
that the 6.4 keV iron K a  emission line and associated Compton reflection hump above 7 keV was 
common amongst Seyfert galaxies (Pounds et al. 1990; Nandra & Pounds 1994). The higher (CCD) 
resolution spectra available with the ASCA satellite appeared to indicate that the line profiles were 
broad and asymmetrically skewed (to lower energies), which was interpreted as evidence that the 
majority of the line emission originated from the inner accretion disk around the massive black 
hole (Tanaka et al. 1995; Nandra et al. 1997; Reynolds 1997). Indeed observations of NGC 3783 
with ASCA also appeared to show a broad, relativistic iron line profile (Nandra et al. 1997; George 
et al. 1998), whilst the presence of the higher energy Compton reflection hump in NGC 3783 has 
been confirmed in a BeppoSAX observation (De Rosa et al. 2002). 

The picture now emerging from the study of the iron K line with XMM-Newton and Chandra 
appears to be much more complex. The presence of a narrower 6.4 keV iron emission component, 
from more distant matter (e.g. the outer disk, BLR or the molecular torus) appears to be com- 
monplace in many type I AGN including NGC 3783, e.g. Mrk 205 (Reeves et al. 2001); NGC 
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5548 (Yaqoob et al. 2001); NGC 5506 (Matt et al. 2001); Mrk 509 (Pounds et al. 2002); NGC 
3516 (Turner et al. 2002); NGC 4151 (Schurch et al. 2003) and many other objects. In contrast the 
broad, relativistic component of the iron line profile appears to be much weaker than anticipated 
(Pounds & Reeves 2002; Reeves 2003) and in some cases may be absent altogether, e.g. NGC 
5548 (Pounds et al. 2003a); NGC 4151 (Schurch et al. 2003). Observations have also revealed 
that highly ionized emission components (from He or H-like iron) may also be present in some, 
typically higher luminosity AGN, e.g. PG 1116+215 (Nandra et al. 1996); Mrk 205 (Reeves et 
al. 2001); NGC 5506 (Matt et al. 2001); Mrk 509 (Pounds et al. 2002); Mrk 766 (Pounds et al. 
2003b); NGC 73 14 (Yaqoob et al. 2003). The situation seems even further complicated, because 
of the presence of ionized iron K-shell absorption edges andor lines in some AGN (Nandra et 
al. 1999; Chartas et al. 2002; Chartas, Brandt & Gallagher 2003; Pounds et al. 2003c; Reeves et 
al. 2003), which may be associated with high velocity outflows. Furthermore transient, narrow, 
redshifted Fe line features have been observed in some AGN, e.g. NGC 3516 (Turner et al. 2002); 
Mrk 766, (Turner et al. 2003), which may be the emission associated with such outflows. 

Here we present a study of the iron K-shell line from a long (240 ks) observation of NGC 
3783 conducted by XMM-Newton in December 2001. The results from a much shorter (40 ks) 
earlier observation of NGC 3783 by XMM-Newton have been published by Blustin et al. (2002), 
who hghlight the complexity of the iron line profile in this object, whilst an analysis of the RGS 
spectrum from this observation have recently been presented by Behar et al. (2003). Together with 
the long 300 ks XMM-Newton exposure of the Seyfert 1 MCG -6-30-15 (Fabian et al. 2002), the 
current observation represents the best available dataset with which to study the iron K line profile 
in AGN, as the long XMM-Newton observations offer very high signal to noise up to 12 keV. 
This allows us to study the various components, such as the narrow and broad lines, the reflection 
hump above 7 keV and any absorption lines or edges present in the iron K-shell band. The long 
XMM-Newton observation also makes it feasible to probe any changes in the iron K profile and the 
continuum on relatively short timescales. The higher resolution, but lower signal to noise 900 ks 
Chandra-HETGS spectrum complements this XMM-Newton observation by allowing the study of 
the narrow emissiodabsorption lines at higher spectral resolution; detailed modeling of the iron K 
band in this non-simultaneous dataset will be presented in another paper (Yaqoob et al. 2003, in 
preparation). 

In Section 2, the XMM-Newton observations of NGC 3783 are outlined, whilst in Section 3 
the detailed modeling of the time-averaged iron K line profile is performed. In Section 4 the effect 
of the warm absorber on the iron line profile is investigated, whilst in Section 5 we discuss the 
variability of the iron K-shell band and continuum over the observation. 
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2. The XMM-Newton Observations 

NGC 3783 was observed by XMM-Newton between 17-21 December 2001 over 2 complete 
satellite orbits, with a total good exposure of just over 240 ks with the EPIC (European Photon 
Imaging Camera) detectors. Data was taken with the EPIC-pn detector (Struder et al. 2001) in 
Small Window Mode and with the EPIC-MOS detectors (Turner et al. 2001) in Full Window mode 
and timing mode. The data was reduced using version 5.4 of the XMM-SAS software using the 
standard processing scripts (EMCHAIN and EPCHAIN). Only short time intervals were excluded 
during the end of each satellite orbit, due to high count rate background flares, the background 
rates were nominal for the remainder of the observation. Data were selected using event patterns 
0-12 (for the MOS) and pattern 0-4 (for the pn) and only good X-ray events (using the selection ex- 
pression 'FLAG=O' in EVSELECT) were included. The spectra were extracted from circular source 
regions of 40" radius, whilst background spectra were extracted from an offset circle of identical 
size, close to NGC 3783, but free of any background sources. Response matrices and ancillary 
response files were generated using the SAS tasks RMFGEN and ARFGEN respectively. The time- 
averaged, 0.2-12 keV flux of NGC 3783 during the observation was 6.8 x lo-'' ergs cm-2 s-'. The 
EPIC-pn lightcurve extracted over the full 0.2-12.0 keV band for both orbits is shown in Figure 1. 

Unfortunately none of the MOS data taken during the observation are suitable for detailed 
spectral analysis, as the full window observations are heavily piled up at the flux level of the source, 
whilst the MOS timing modes are not presently calibrated to sufficient accuracy. Conversely the 
EPIC-pn exposures taken in Small Window mode do not suffer from significant pile-up, at the 
level of < 2% of events. Thus the spectral analysis was restricted to the EPIC-pn detector, which 
provides the highest signal to noise ratio in the iron K-shell band up to 12 keV. Background sub- 
tracted spectra were fitted using xSPEC vl1.2, including data over the energy ranges 0.3 to 12 keV. 
A Galactic absorption column of NH = 8.5 x 1020 cm-2 (Dickey & Lockman 1990) was included 
in all the fits and fit parameters are quoted in the rest-frame of NGC 3783 at z=0.00973. Given the 
large number of counts available in the observation, the source spectra were binned to a minimum 
of 50 counts per bin to enable the use of the x2 minimization process when performing X-ray 
spectral fits. All errors are quoted at 90% confidence for one interesting parameter (corresponding 
to Ax2 = 2.7). 

2.1. Initial Spectral Fits 

Initially we concentrate our analysis on the time-averaged NGC 3783 spectrum, from the 
whole 240 ks observation, which provides us with the highest signal to noise, especially important 
for studying the iron K-shell band in the greatest detail. A time dependent analysis is described 
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in Section 5, which shows that any temporal spectral changes are subtle, and do not effect our 
conclusions about the mean iron line profile. Initially a single power-law was fitted over a relatively 
clean part of the EPIC-pn spectrum between 3.5-5 keV, i.e. avoiding the iron line above 5 keV and 
the strong wann absorber in the soft X-ray part of the spectrum. The best-fit photon index was 
I' = 1.6, whilst the spectrum and datdmodel residuals (Figure 2) show a clear deficit of counts 
between 0.7 and 3 keV, due to the known soft X-ray wann absorber in NGC 3783, whilst strong 
residuals are also present above 6 keV in the iron K-shell ernissiodabsorption band. A weak soft 
X-ray excess is also present at the lowest energies below 0.7 keV, which has also been detected in 
an earlier BeppoSAX observation (De Rosa et al. 2002). 

In order to model the iron K shell band we concentrate our analysis on the higher energy 
portion of the spectrum. The exact value of the low energy cut-off used is important, as the aim is 
to analyze part of the spectrum which is largely unaffected by the strong soft X-ray warm absorber, 
which can have a considerable effect in the determination of the underlying continuum. Inspection 
of Figure 2 shows that the absorber starts to have a significant effect below 3 keV in the EPIC-pn 
data. We have also studied the (non-simultaneous) 900 ks Chandra-HETGS observation presented 
by Kaspi et al. (2002). All the strong absorption features in this spectrum are present below 4.5 
Angstrom (2.8 keV) mainly due to K-shell absorption lines from elements between C and S, as well 
as L-shell absorption from iron. The last abundant element that may contribute discrete spectral 
features in the soft X-ray absorber is Ar, the HETGS spectrum shows that there are weak absorption 
lines due to He and H-like Ar at 3.1 and 3.3 keV respectively. 

In order to minimize the effect of the warm absorber when analyzing the iron K line profile, 
we adopt a conservative approach, and restrict our spectral analysis to the energy range from 3.5 
to 12 keV. Over this band the only discrete absorption features (other than from iron) are due to 
Ca XIX and Ca XX, which are extremely weak even in the 900 ks HETGS observation and are not 
a significant source of opacity in the EPIC-pn spectrum. In a later section of this paper (Section 
4) we also discuss the effect the warrn absorber may have on the continuum (through bound-free 
absorption) and above the neutral iron K-shell edge, by comparing our fits with models generated 
with the photo-ionization code XSTAR (Kallman et al. 1996). 

3. The Time-Averaged Iron line Profile of NGC 3783 

Initially we fitted the hard band (3.5-12 keV) EPIC-pn spectrum with a simple power-law to- 
gether with neutral absorption from our own Galaxy. The fit was very poor (X2/do f = 3719/1292), 
with a best-fit photon index of I' = 1.58 f 0.01. All the fit parameters are listed in Table 1. The 
datdmodel residuals are plotted in Figure 3 (panel a), two strong emission lines are apparent close 
to 6.4 keV and 7.0 keV, as well as a deficit of counts both near 6.6-6.7 keV and above the neutral 
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iron K edge at 7 keV, whilst a small excess of counts is observed red-wards of the 6.4 keV line. 

As a first step, we model the two strong emission lines with simple Gaussian profiles (Table 
1, fit l),  with the energy, width and line flux free parameters (in addition to the continuum photon 
index and normalization). The line centroids are at 6.39 f 0.01 keV and 7.00 f 0.02 keV, with 
equivalent widths of 123 f 6 eV and 34 f 5 eV and fluxes of (5.9 f 0.3) x erg cmd2 s-' and 
(1.4f 0.3) x erg cm-2 s-' respectively. The 1c~ widths of the 6.4 and 7.0 keV lines are 57 f 
8 eV and 53 f 23 eV respectively, which correspond to FWHM velocity widths of - 6100 km s-' 
and - 5200 km s-l respectively. Note that the non-zero widths of the lines are required by the data, 
for the Kpl line the improvement in fit statistic is Ax2 = 81 for allowing the width to be non-zero 
(corresponding to an F-test null hypothesis probability of 1.3 x We comment on possible 
origins of the width of the 6.4 keV line later. 

The observed ratio of the line fluxes are approximately 4: 1, whereas one would expect a ratio 
of 150: 17 between the K a  and KP transitions from neutral iron. Thus there is likely to be an extra 
component contributing towards the emission line at 7.0 keV. Indeed the line energy of the 7.0 keV 
line is in between the lab frame energies for Fe XXVI Lya and Fe I KP, which indicates that this 
line is a blend of these two emission lines (and which may in part account for the velocity width of 
this line component). In order to determine the strength of the putative H-like iron line, we fixed 
the ratio of the intensity of the KP line at 7.06 keV to 17/150 of that of the Fe K a  line at 6.4 keV. 
We also tied the velocity widths of the all 3 emission lines to that of the 6.4 keV line (Table 1, 
fit 2). Indeed a H-like Fe line component is required in the fits (Ax2 = 52 for 2 extra degrees of 
freedom), the measured energy of 6.96 f 0.02 keV is very close to the known rest-frame energy 
for Fe XXVI at 6.966 keV (Pike et al. 1996), whilst the equivalent width of the line is 20 f 5 eV. 

Overall the fit statistic for this three component emission line fit (with X2/dof = 1591/1287) 
is not formally acceptable, corresponding to a null hypothesis probability of 1.15 x lo-*. The 
datdmodel residuals to this fit are shown in Figure 3b, clearly there is a broad excess' (red-wing) 
below 6.4 k e y  whilst there appears to be an absorption line in the data near 6.6-6.7 keV. A strong 
Compton reflection component may also be present, as indicated in the spectrum by an edge above 
7 keV and spectral hardening up to 12 keV. Indeed one would expect a Compton hump to ac- 
company the 6.4 keV iron K emission line, if the line results from reprocessing in Compton-thick 
matter. Thus a neutral Compton reflection component, the PEXRAV model in XSPEC (Magdziarz & 
Zdziarski 1995), was added to the model. The strength of the reflection component (measured by 
the parameter R = 52/21r, where 52 is the solid angle in steradian covered by the reflecting material) 
was initially fixed at R = 1, with an inclination of 30"and a cut-off energy of - 250 keV using solar 
abundances. Note these parameters are consistent with the measurement of a Compton hump in an 
earlier BeppoSAX observation (De Rosa et al. 2002), where the strength of the reflection compo- 
nent was measured to be R N 0.8 with a cut-off energy of about 300 keV. After adding the Compton 
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reflection component, the fit statistic improves considerably (x2/do f = 1492/1287), whilst all 3 
emission lines are still required in the dataset (Table 1, fit 3). The underlying power-law slope is 
now steeper (I' = 1.73 f 0.01), accounting for the soft excess observed in the broad-band EPIC-pn 
spectrum. After allowing the strength of the reflection component to vary, we obtain R = 1.6 f 0.3, 
with a steeper photon index (I' = 1.78 fO.O1). However as the exact value of R is very dependent 
on the high energy calibration of the EPIC-pn above 8 keV, we proceed by fixing R to 1, which is 
consistent with the strength of the Fe K a  line measured in the spectrum (George & Fabian 1991) 
and the measurement of the reflection hump by BeppoSAX (De Rosa et al. 2002). 

After adding the reflection component to the spectral fit the excess of counts below 6.4 keV 
and the absorption line near 6.7 keV are still apparent in the residuals (Figure 3c). To model the 
apparent red-wing to the Fe K a  line we added a 'Diskline' component (Fabian et al. 1989), to 
represent the emission from the inner accretion disk around a Schwarzschild black hole, taking the 
inner and outer radii of the disk as 6Rs and lOORs respectively (where Rs = 2GM/$) and fixing the 
rest-energy of the diskline emission at 6.4 keV. The improvement in fit statistic upon adding the 
diskline component is substantial (Ax2 = 112 for 3 additional parameters). The emissivity (p) of 
the diskline (where the disk emission varies with radius as R - P )  was p = 3.3 f 0.5, the inclination 
angle derived was 19 f 9" whilst the strength of the line is relatively weak (the equivalent width is 
58 f 12 eV). 

The spectral fit was improved further by the addition of a narrow (unresolved by EPIC-pn) 
absorption line at 6.67f0.04 keV, with an equivalent width of 1 7 f 5  eV. Note the other iron 
emission line components are required as in the previous fits (Table 1, fit 4). The absorption line 
component is unambiguously required in the model fit with a high degree of statistical significance 
(Ax2 = 56 for 2 additional degrees of freedom), equivalent to an F-test null hypothesis probability 
of 2.9 x The absorption line cannot be modeled with another emission component, such 
as the blue-wing of the disk emission line for instance, as the line is observed below the level of 
the power-law continuum (e.g. see Figure 3, panel c and d). The energy of this absorption line 
component probably corresponds to a blend of several lines of hghly ionized iron, e.g. Fe XXIII 
at 6.62 keV, Fe XXIV at 6.66 keV and Fe XXV at 6.70 keV. Overall the fit statistic (X2/dof  = 
1324/1282) is now formally acceptable, no other spectral components are required. 

3.1. The Width of the 6.4 keV Fe line 

After modeling all the emission and absorption line components, and takmg into account the 
resolution of the EPIC-pn detector (through the pn re-distribution matrix), the best fit la width 
of the 6.4 keV K a  line is a = 5 2 f  10 eV. In terms of the FWHM width, this corresponds to 
120 f 23 eV or 5600 f 1100 km s-' and appears to be just resolved by the EPIC-pn detector (see 
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Figure 4). Note that the neutral Fe K a  line is actually a blend of two lines, at 6.391 keV and 
6.404 keV, with a branching ratio of 2: 1. However talung this into account in the spectral fits has a 
negligible effect on the velocity width of the line. 

We note that this velocity width is broader than that reported by Kaspi et al. (2002) from the 
900 ks Chandra HETGS observation. However some caution should be exercised when interpreting 
the velocity width obtained from the lower resolution EPIC-pn spectrum (FWHM resolution AE N 

120 eV at 6 keV) compared to the higher resolution HETGS spectrum (AE - 35 eV at 6 keV). 
For instance the 6.4 keV line may appear to be slightly broader, as the EPIC-pn is largely unable 
to resolve the first Compton scattering shoulder of this line (at 6.29 keV), which is apparent in the 
HETGS data (Yaqoob et al. 2003, in preparation). In addition, some contribution from a weak outer 
disk emission line component may also contribute towards the width of the EPIC-pn line. Thus 
the quoted velocity width of - 5600 km s-l should be regarded as an upper limit. Nonetheless 
the width of the line is consistent with the bulk of the line flux originating from the broad line 
region (BLR); in NGC 3783 the typical FWHM velocity dispersion in the BLR is - 4000 km s-l 
(Riechert et al. 1994; Wandel, Peterson & Malkan 1999). However some contribution from further 
out, such as the the outer BLR or molecular torus, cannot be discounted. 

4. The Effect of the Warm Absorber 

Whilst measuring the iron K line profile is our primary aim in this paper, it is important to 
verify whether the deep soft X-ray warm absorber in NGC 3783 absorber has any effect on the 
high energy spectrum and the iron line profile. The warm absorber could introduce subtle spectral 
curvature below 6.4 keV, and there may be some additional opacity above the neutral iron K- 
shell edge at 7.1 keV. Whilst t h s  will have little effect on modeling the narrow Fe emission line 
components, the effect on the weak, broad red-wing (which constitutes only 5% of the continuum 
at 6 keV) may be crucial. Furthermore there is direct evidence for a high ionization component of 
the warm absorber in the iron K-shell band, through the detection of a strong 6.7 keV absorption 
line. 

As a starting point, we base our initial models on those of Blustin et al. (2002), who fit the 
RGS spectra from an earlier, short (40 ks) XMM-Newton observation of NGC 3783. Conveniently, 
these authors parameterized their model in terms of a two zone warm absorber; a lugh ionization 
component responsible for the He and H-like K-shell absorption lines from the abundant soft X-ray 
elements (e.g. Cy N, 0, Ne, Mg) as well as L-shell absorption from highly ionized iron (Fe XVII- 

xXIV), with a low ionization component responsible for the unresolved transition array (UTA) 
resulting from a blend of inner-shell 2 p  + 3d absorption lines from Fe M-shell ions. Although 
this model parameterizes an earlier observation, it is thought that the warm absorber in NGC 3783 
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is relatively stable over time, as shown recently by Behar et al. (2003), who argue that the most 
recent RGS spectra from the long XMM-Nwton look agree well with this earlier Blustin et ai. 
(2002) model. A similar conclusion has been reached by Netzer et al. (2003) from a detailed 
analysis of all the Chandra observations over time of this source. 

In order to duplicate this soft X-ray absorption as closely as possible, we generated two grids 
of XSTAR photoionization models with similar parameters to those used in the Blustin et al. (2002) 
model. The relative elemental abundances of C through to Fe quoted in Blustin et al. (2002) were 
used, together with an outflow velocity of 800 km s-l and a (la) turbulence velocity of 500 km s-l. 
As per Blustin et al. (2002), for the low ionization component we use an iron over-abundance of 
10 times solar, and then fix the column density and ionization parameter at NH = 6 x 1020 cm-2 and 
log = 0.3 erg cm s-l respectively. Note however that this low ionization component is only added 
for completeness, it has relatively little effect on the high energy spectrum above 3.5 keV, only 
adding a small amount of opacity near the neutral iron K edge at 7.1 keV. For the higher ionization 
component, we initially fix the column density at NH = 3 x cm-2 with an ionization parameter 
of log E = 2.4, using solar abundances of iron. 

This model was then applied to the EPIC-pn spectrum over the 3.5-12 keV bandpass. Two 
narrow emission line components (one representing Fe Ka,  the 2nd representing the blend of Fe 
Kp and Fe XXVI) were included in the fit, as well as the reflection component (with R fixed at 
1) and the power-law continuum. Neither the diskline component nor the absorption line at 6.7 
keV were included in the model. Initially the fit is poor (x2/dof  = 1528/1287), the model does 
not reproduce the energy and depth of the strong 6.7 keV absorption line present in the data, as 
the ionization state of even the higher ionization absorber is not sufficient to produce the required 
column of highly ionized iron (e.g. Fe XXIII-XXV). 

Thus, to fit the Fe K-shell absorption line present in the XMM-Newton EPIC data, we allowed 
the ionization parameter and column density of the highest ionization absorption component to 
vary. A higher ionization parameter of log 5 = 2.9 f 0.3 erg cm s-l is required, whilst the column 
density is now NH = (4.6 f0.8) x cm-2 and the underlying continuum slope is r = 1.69 f 0.01. 
The fit to the spectrum has significantly improved (x2/dof = 1332/1284), reproducing the depth 
of the 6.7 keV absorption line well (see Figure 5), as the ionization state of the absorber is now 
high enough for Fe XXIII-xxv to be the dominant ions present. 

Therefore this high ionization absorber, which is responsible for the resonant iron absorp- 
tion line, probably represents the highest ionization component of the known warm absorber in 
NGC 3783, in addition to the lower ionization components responsible for the soft X-ray absorber, 
as measured by Blustin et al. (2002) and Kaspi et al. (2002) in the XMM-Newton RGS and Chun- 
dra HETGS spectra respectively. Note that extrapolating this best fitting high ionization model to 
lower energies (0.3 keV), but also including the lower ionization (with log 5 - 2.4 and log [ - 0.3) 
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warm absorber components modeled by (Blustin et al. 2002), gave a reasonable fit to the broad- 
band (0.3-12 keV) EPIC-pn spectrum. The overall fit statistic was x2/dof  = 2641/1894, whilst 
the broad-band spectrum, and datdmodel residuals to the warm absorber model, are plotted in 
Figure 6. The remaining residuals present in the spectrum are small, at the 5% level, similar to the 
residual calibration uncertainties in the EPIC-pn responses. The continuum photon index returned 
was I? = 1.67 f 0.01, whilst a weak soft excess modeled by a black-body with a temperature of 
kT = 97 4 eV was required to fit the very softest part of the spectrum. 

Interestingly, with the addition of the warm absorber, there is now no longer any requirement 
for the broad, relativistic disk emission component, the fit statistic is not significantly improved 
upon the addition of a diskline component, as the residuals to the warm absorber fit are small. 
(Note that the existence of the narrow Fe emission components are not affected). Formally the 
90% upper-limit on a disk emission line component is < 35 eV, assuming a disk emissivity of 
,B = 3 and an inclination angle of 30". 

In order to assess directly the effect of the warm absorber on the high energy spectrum, we 
removed the warm absorber components from the model. The result is shown in Figure 7, clearly 
one can see the contribution that the high ionization absorber makes towards the 6.7 keV absorption 
line. However the absorber also introduces some continuum curvature below the iron K line (which 
effects the fits to the broad line component), whilst there is also some opacity from 7-9 keV due 
to iron K-shell bound-free absorption, with an optical depth r 5 0.1. This is also illustrated in 
Figure 8, which plots the highest ionization component of the warm absorber model, normalized 
to a I? = 2 power-law continuum. One can clearly see the continuum curvature between 3-6 keV, 
due to recovery from highly ionized K-shell edges from Mg, Si and S as well as from the L-shell 
edges of Fe below 3 keV. Additional opacity is also present above 8 keV, due to a blend of iron 
K-shell edges, as well the K,B (and higher series) absorption lines of highly ionized iron. 

5. Variability of the Fe line and hard X-ray continuum 

Initially we split the observation according to the two separate XMM-Newton orbits (e.g. Fig- 
ure 1). The time-averaged flux state was relatively low during the first orbit (3.5-10 keV band 
flux of 2.77 x lo-" erg cm-2 s-') and higher during the 2nd orbit (3.5-10 keV band flux of 
3.69 x lo-" erg cm-2 s-'). As in the earlier fits, the iron K-shell spectral features were parameter- 
ized by multiple Gaussian emissiodabsorption line components and a neutral reflector (with R = 1). 
A slight steepening with flux of the hard power-law index was observed, from I? = 1.62f0.01 in the 
first orbit to I? = 1.68 fO.01 during the 2nd orbit. However there was no change in the 6.4 keV Fe 
Ka line parameters, the Fe line flux being consistent with a constant value (5.7 f 0.4 X pho- 
tons cm-2 s-l during the first orbit and 5.4 f 0.5 x photons cm-2 s-l during the 2nd orbit). 
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These values are also consistent with the Fe K a  flux measured in the long Chandra HETGS ob- 
servation, of 5.3 f 0.6 x photons cm-* s-l (Kaspi et al. 2002). Note, given the much poorer 
statistics on the 7.0 keV line, it is not possible to determine whether or not this line component 
varied. 

However, a significant change in the 6.7 keV absorption line was observed from one orbit to 
the next, indicating that the highly ionized absorber is variable on timescales of - lo5 s. This is 
illustrated in Figure 9, which shows the ratio to the best fit model to the data (but not including the 
absorption component) for the two orbits. Thus the absorption line appears to be strongest during 
the second, higher flux orbit (with an equivalent width of 18 f 4 eV), whilst it was barely detected 
during the first orbit (equivalent width of 7 & 4 eV). 

The observations were also split into shorter time segments, of 8 x 30 ks duration (i.e. 4 
segments per orbit). However the more limited photon statistics do not enable us to determine 
whether the 6.7 keV absorption line is variable over this shorter timescale. However a similar 
pattern was seen with regards to variability of the Fe Ka, line and the continuum. Whilst the 3.5-10 
keV continuum flux varied by as much as 50% during the observation, there was no change in the 
iron Ka line flux (to within 10% of the mean value). Similarily, a change in continuum photon 
index was observed, steepening from I' = 1.57 f 0.02 at the lowest flux level to I' = 1.71 f 0.02 
at the highest flux level. This is consistent with the well known positive Flux-Gamma correlation 
found in many active galaxies. An alternative interpretation is that the primary power-law index 
may infact be the same for the different flux states. However if the Compton reflector originates 
from distant matter and does not respond to the continuum (which appears consistent with the 
constant-flux K a  emission line), then this component will appear stronger relative to the weaker 
power-law in the low flux spectra, resulting in a harder spectrum overall. 

6. Discussion and Conclusions 

The long XMM-Navton observation of the bright, Seyfert 1 galaxy NGC 3783 has revealed 
a complex iron K line profile above 3.5 key Two strong, but relatively narrow emission lines are 
apparent at 6.4 and 7.0 keV, the former from the (near) neutral Fe K a  fluorescence line, whilst the 
latter is likely to be a blend of the neutral Fe Kp line as well as a component from hydrogenic iron 
(i.e. Fe XXVI Ly-a). The observations also revealed a weak red-wing to the iron K a  line profile 
below 6.4 keV, as well as an unambiguous detection of a high ionization iron absorption line at 6.7 
keV. 
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6.1. The Nature of the Iron K Line Emission in NGC 3783 

The 6.4 keV Fe K a  line appears to be resolved in the EPIC-pn spectrum, with a typical 
m) velocity width of - 5000 km s-l. At first glance this velocity is consistent with the 
FWHM dispersion in the BLR of NGC 3783 (Riechert et al. 1994; Wandel, Peterson & Malkan 
1999). However we note that the velocity width determined by the higher spectral resolution 
Chandra HETGS observation is much lower, the core of the 6.4 keV line having a FWHM width 
of N 1800 km s-l (Kaspi et al. 2002). One possible explanation for this apparent discrepancy is 
the lower spectral resolution of the EPIC-pn detector compared to the HETG. For instance at the 
EPIC-pn resolution (AE N 120 eV at 6 keV), it is difficult to resolve the narrow core of the line 
from a broader component, such as the Compton scattering shoulder of the line, which is apparent 
in the Chandra line profile (Yaqoob et al. 2003, in preparation). 

Indeed the detection of the Compton scattering shoulder in the Chandra line profile, as well as 
the narrow width of the line core is indicative of scattering in distant Compton thick matter. Addi- 
tionally both the XMM-Newton and the earlier BeppoSAX (De Rosa et al. 2002) observations also 
require a strong (R  N 1) Compton reflection component above 7 keV. However the line is unlikely 
to originate from the disk unless the typical radius is > lOOOR,. Furthermore line does not respond 
to the continuum within the timescale (days) of the XMM-Newton observation in December 2001, 
whilst the line flux also does not appear to vary within the 18 month timescale of the Chandra 
observations between 21 January 2000 and 26 June 2001 (Yaqoob et al. 2003, in preparation), or 
indeed between the Chandra observations and the December 2001 XMM-Newton observation (the 
mean line flux from Chandra, of 5.3 f 0.6 x photons cm-2 s-l, Kaspi et al. 2002, is consistent 
with the XMM-Newton value). Given the lack of variation on these timescales, the bulk of the 6.4 
keV line would appear to originate from distant matter. In the context of AGN unification schemes 
(Antonucci 1993), one possible source for this distant, Compton-thick reprocessor is the putative 
molecular torus. Indeed predictions show that the putative torus may be a major contributer to- 
wards both the 6.4 keV line commonly seen in the Seyfert 1 spectra from both XMM-Newton and 
Chandra observations, as well as the strong iron lines observed in Seyfert 2s (Ghisellini, Haardt & 
Matt 1994). Other geometries are also possible such as scattering off the Compton thick compo- 
nent of any quasar outflow (Elvis 2000). 

Whilst the detection of a narrow and distant 6.4 keV iron line now appears robust in this and 
many of the Seyfert Is, generally the presence of the broad iron K line from the inner accretion 
disk (Tanaka et al. 1995; Nandra et al. 1997) is subject to considerable debate, the broad red-wing 
being much weaker than anticipated in the new Chandra and XMM-Newton datasets, for instance 
in NGC 5548 (Pounds et al. 2003a) or NGC 4151 (Schurch et al. 2003). If a disk-line component 
is present in NGC 3783 it is very weak, with an equivalent width of only 60 eV even before the 
warm absorber was modeled. 
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However, once the high ionization absorber responsible for the Fe K-shell absorption is ac- 
counted for in NGC 3783, then the requirement for a broad line is further reduced, with a formal 
upper-limit of < 35 eV on the equivalent width of such a component. The reduction in strength of 
the broad line is mainly due to the fact that the absorber can introduce subtle continuum curvature 
in the X-ray spectrum, even in the iron K-shell band (e.g. see Figures 7 and 8). Indeed this current 
study may have implications for the detection of the broad iron K a  line in other AGN, which also 
have a strong ionized absorbers (for instance in NGC 4151 or MCG -6-30-15). In the case of MCG 
-6-30-15, the broad line component is much stronger (Tanaka et al. 1995; Wilms et al. 2001; Fabian 
et al. 2002) and its detection appears to be more robust to the spectral model and underlying con- 
tinuum slope that is assumed (Reynolds et al. 2003; Vaughan, Fabian & Iwasawa 2003). However, 
the wealth of data now available through the XMM-Newton and Chandra archives clearly call for 
a more thorough, systematic analysis of the iron line profile in many AGN. 

Indeed an important question is why the broad line is not required in many of the XMM- 
Newton Seyfert 1 spectra, and particularly in NGC 3783, which represents one of the highest 
quality iron line profiles obtained on any AGN to date? One possibility is that the inner disk is 
truncated, however given the observed width of the 6.4 keV line (m 5000 km s-'), this requires 
that the bulk of the line emission occurs out at radii > lOOOR,. However, at such a distance 
from the black hole, there is unlikely to be substantial hard X-ray emission. Another scenario 
which is perhaps more realistic is that the inner d s k  is strongly photoionized, so that most of the 
iron at the disk surface is fully ionized, and the subsequently the line is too weak to be detected. 
The magnetic flare model proposed by Nayakshin & Kallman (2001), where the X-ray flux is 
concentrated in small, intense regions above the disk, can produce a very highly ionized skin at the 
local disk surface (with a high Compton temperature). The signature of this is a very weak iron 
line and reflection component, particularly when the underlying photon index is hard (I? < 2). One 
possibility is that the weak emission from Fe XXVI observed in this spectrum is the signature of thls 
highly ionized disk reprocessor. Note that an emission component from Fe XXVI has already been 
observed in the Chandra HETGS spectrum of the Seyfert 1 NGC 73 14 (Yaqoob et al. 2003), which 
is variable on short timescales, indicating emission from close to the central engine. Furthermore 
weak, He-like iron lines have also been detected in a some higher luminosity AGN, e.g. PG 
11 16+215, Nandra et al. (1996); Mrk 205, Reeves et al. (2001); Mrk 509, Pounds et al. (2002). 
Thus it seems plausible that the inner disk reprocessor in many AGN may be highly ionized, to the 
extent that in some cases the lines are undetectable. 
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6.2. The Origin of the Variable, Highly Ionized Iron Absorber 

Perhaps the most intriguing finding from this observation is the discovery of a variable absorp- 
tion line component from highly ionized iron. The observed energy of the line (6.67 f 0.04 keV) is 
consistent with the 1s + 2p transitions of Fe XXIII (6.630 keV), Fe XXIV (6.659 keV) and Fe XXV 

(6.702 keV) at the systemic velocity of NGC 3783. These transitions all have similar oscillator 
strengths cfosc N 0.6-0.7), hence the observed feature could be a blend of these ions. This absorber 
may represent the highest ionization phase of the gas that is responsible for the soft X-ray absorber 
in NGC 3783. 

However, recent studies indicate that the lower ionization absorption components in NGC 
3783 (Behar et al. 2003; Netzer et al. 2003) responsible for the soft X-ray absorber, do not vary, 
implying that this absorbing matter is located at large, parsec scale distances. The detection of rapid 
variability in the iron absorber within the XMM-Newton observation does not appear consistent 
with this; it is possible that the lugh ionization absorber is a physically separate component, located 
closer to the nucleus. In order to provide a zeroth order estimate for the location of the high 
ionization absorber, we calculated the maximum possible distance to the iron absorber, on the 
condition that AR/R < 1, i.e. its thickness (AR)  cannot exceed its distance (R) from the nucleus. 
Combining the equations NH = nAR and = L/nR2 yields R < L/NHJ. Now as L = erg s-l , NH = 
5 x cm-2 and = lo3 erg cm s-l, then the maximum distance of the absorber is 2 x 1017 cm, 
or < 0.1 pc from the nucleus. 

The XMM-Navton observations show that the Fe absorption line is variable on timescales of 
tvar 5 lo5 s. One possibility is that the variation in depth of the absorber between the two orbits 
may arise through changes in the ionization state of iron due to an increase in the illuminating flux. 
In the optically-thin limit, Fe XXIII-xxv are the dominant ions over a wide range of 5 (400 5 

5 1600 erg cm s-l). However the lack of significant absorption observed from the 1s + 2p 
transition of Fe XXVI (6.966 keV) implies an ionization parameter may be towards the lower end 
of this range. For instance, if E N 6 x lo2 erg cm s-l, then the relative ionization fractions cf;on) 
will be 0.06, 0.40,0.31 and 0.14 for Fe XXVI, Fe XXV, Fe XXIV, and Fe XXIII respectively (and 
Aon << 0.05 for the less-ionized species). With such an ionization structure, a reasonable fit to the 
absorption feature detected in the 2nd-orbit is obtained (see Figure 10, panel a) for a total column 
density of Fe cm-2 for an Fe abundance A F ~  = 
2.7 x 

21 3 x 1017 cm-2 (corresponding to NH - 
Wilms, Allen & McCray (2000)), assuming ionization equilibrium has been reached. 

Now let us consider the 1st-orbit, when the observed intensity of the source was a factor 
N 1.3 lower. In the simplest case, when the absorbing gas is far from the nucleus and sees the same 
continuum as ourselves, then the ratio of the illuminating flux (and hence t) between the 2nd- and 
1st-orbits is also 1.3. However such a situation is rejected by the data: Fe XXV, Fe XXIV, and 
Fe XXIII ions would still be the dominant Fe ions (with fi,, = 0.22, 0.28 and 0.22, respectively) 
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resulting in a predicted absorption blend stronger than observed. However the observed hard X-ray 
continuum is likely to be a composite of the variable primary continuum from the central engine 
and a constant rejected continuum from distant matter. This reflection component is observed in 
the high energy XMM-Navtun spectrum, through the detection of a strong narrow K a  line and 
a Compton hump above 7 keV, hence the flux change in the primary continuum emission may 
be higher, by as much as a factor of two. Indeed a satisfactory model (Figure 10, panel b) can 
be obtained if we decrease the ionization state further in the first orbit by reducing ionization 
parameter to 5 N 3 x lo2 erg cm s-' , i.e. by a factor 2 compared to that during the 2nd-orbit. Under 
these circumstances Fe XXIII and Fe XXII are the dominant ions (with 5 20% of the Fe in the form 
of Fe XXIV and above see Figure 10, panel c). Due to the lower oscillator strengths of Fe XXII and 
below, a weaker line is predicted which is in agreement with the data. 

The above example calculations assume ionization equilibrium. One can then consider the cir- 
cumstances under which this might be true. Specifically, one can calculate the ionization timescale 
(tion) required so that sufficient ionizing photons arrive and are absorbed by the gas such as to raise 
the ionization structure of the gas by the required amount. The column density of a given Fe ion 
is simply Nion = J;onN~e and for the underlying continuum appropriate for NGC 3783,90% of the 
ionizing photons will be absorbed within a band of width AE 11 0.8Eh, where is the threshold 
energy. For Fe XXIV, the relavent threshold energy will be at 2.05 keV, i.e corresponding to the 
L-shell edge energy of Fe XXIV. If the number of photons emitted by the source at E* is Ni(Eh), 
and the distance to the absorber is R, then the number of photons absorbed (per unit area) by a 
given ion within the gas in a time tion is Ni(E&)AE tion (1 - e')/(47rR2), where T = DhNion and 0th 
is the cross-section at the threshold energy. 

Equating this to Ni, then defines tion for that ion. Requiring ti,, 5 tyar then leads to an upper 
limit on R such that the ionization state of the absorber is able to react to variations in illumination 
within tW. For the ions of interest noted above (i.e. Fe XXI-XXIV), and assuming a distance of 
42 Mpc towards NGC 3783, then the ionization equilibrium can be achieved in the lo5 s timescale 
between the 1st- and 2nd-orbits if R 5 0.02 pc. This is significantly smaller than the parsec-scale 
distances derived for the soft X-ray absorber (Behar et al. 2003; Netzer et ai. 2003), but is consistent 
with the AR/R estimate above. 

Another possibility is that this absorber is similar to the extreme, high velocity (v N 0. IC) iron 
absorbers recently observed in some AGN by XMM-Newton and Chundru, e.g. APM 08279+5255 
(Chartas et al. 2002); PG 1211+143 (Pounds et al. 2003~); PG 1115+080 (Chartas, Brandt & 
Gallagher 2003); PDS 456 (Reeves et al. 2003). These outflows may arise from the innermost part 
of a disk driven wind (Proga, Stone & Kallman 2000; King & Pounds 2003). In this case the 
variation seen in the Fe absorber may be due to the passage of ionized matter across the central X- 
ray source. For a given size of the X-ray emitting region in NGC 3783 one can estimate the distance 
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of the transient absorbing material passing in front of the central engine, assuming that this occurs 
on the timescale of the variation seen in the iron absorption line, Le. N lo5 s. In NGC 3783 the 
estimated black hole mass, obtained through BLR reverberation mapping, is N lo7 Ma (Onken & 
Peterson 2002), thus a typical size for the X-ray emitting region is N 20GM/c2 = 3 x 1013cm. Thus 
the velocity of the absorbing matter passing in front of the source in lo5 s is v N 3000 km s-' (or 
0.01~). If one equates this velocity to the escape velocity of the matter at a given radius R from the 
black hole, then the distance of the absorber is R N 10l6 cm. From the definition of the ionization 
parameter, L7(/1= nR2, whilst from observation L7( = erg s-' and < = lo3 erg cm s-', hence the 
density of the absorbing matter is n N lo8 cm-3 

Note that the physical parameters of the highly ionized iron absorber in NGC 3783 are some- 
what less extreme than in some of the more luminous quasars noted above, i.e. the column density 
is a factor of 10 lower, whilst no large velocity shift in the iron absorption line is observed in NGC 
3783. This may indicate we are observing the outflow at a greater distance from the black hole 
(e.g. lOOOR, instead of lOR,). Nonetheless the detection of the 6.7 keV absorption line in NGC 
3783 adds to the growing number of cases where high ionization iron K-shell absorption features 
have been detected. For those AGN where high velocity X-ray iron absorption features have been 
measured, a large mass outflow rate is often required (typically > 1 Ma year-'), of the order of 
(or even greater than) the actual accretion rate required to power the bolometric luminosity of the 
sources, e.g. see the discussion in lGng & Pounds (2003). Similarly, we can also calculate the 
mass outflow rate required to power the high ionization absorber in NGC 3783, assuming an out- 
flow velocity of lo3 km s-l (i.e. consistent with the soft X-ray absorber). For a constant velocity 
outflow, the mass outflow rate will be:- 

u,,, = RnR2vm, 

where s2 is the solid angle subtended by the absorber and mp is the proton mass. For the iron 
absorber parameters derived in NGC 3783 (and assuming R N 7r steradian), the mass outflow rate 
is = 0. lMo year-'. Ths is of the same order as the expected accretion rate required to power 
the observed bolometric luminosity of NGC 3783 (assuming Lbol = 5 x lou erg s-l at 5% accretion 
efficiency). Note that if the soft X-ray component of the warm absorber does reside at parsec scale 
distances, then the mass outflow rate required to sustain this material is even higher, e.g. see the 
calculation in Behar et al. (2003), of the order 10 Ma year-'. 

Indeed the large AGN mass outflow rates that are now emerging from the X-ray spectroscopic 
observations suggest that the role of outflows in AGN are becoming increasingly important. If the 
outflows are a relatively persistent phenomenon, which is likely as the warm absorbers appear to 
reside in >50% of Seyfert galaxies (Reynolds 1997), then a large proportion of the matter feeding 
the AGN may in fact be required to sustain the outflowing material. The implication of this is 
that lifetime of the AGN within a particular galaxy is likely to be shorter than expected, unless the 
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source of fuel can be replenished. Not only may the outflows be important in shaping the evolution 
of the AGN, but they may also play an important role in regulating the bulge mass of the host 
galaxy, potentially providing an important feedback between the mass of the black hole and the 
galaxy bulge (Magorrian et al. 1998; Gebhardt et al. 2000; Ferrarese & Merritt 2000). Furthermore 
if the kinetic energy of the outflows are substantial, particularly in the high velocity cases, then this 
may even provide a potential heating mechanism for the IGM, perhaps accounting for the relative 
lack of cool gas at the center of some massive galaxy clusters (Bohringer et al. 2002). 
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Fig. 1.- The 0.2-12 keV EPIC-pn lightcurve of NGC 3783, observed over two whole XMM- 
Newton orbits. The observation started on 17 November 2001, with a total exposure time (after 
screening) of N 240 ks. 
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Fig. 2.- The broad-band (0.2-12 keV) EPIC-pn spectrum of NGC 3783. The upper panel shows 
the data, plotted against a power-law model of photon index r = 1.6 (solid line), whch has been 
convolved through the detector response matrix. The lower panel shows the datdmodel ratio resid- 
uals to this power-law fit. Clear deviations in the iron K-shell band are apparent between 6-7 keV, 
whilst a deficit of counts (due to the the warm absorber) is present between 0.7-3.0 keV, whilst a 
weak soft excess over the power-law continuum is observed below 0.5 keV. 
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Fig. 3.- Datdmodel ratio residuals of the 3.5-12.0 keV band spectrum of NGC 3783, in the iron 
K-shell band. Panel (a) shows the residuals to a simple power-law fit, with Galactic absorption. 
The two strong peaks due to emission lines at 6.4 and 7.0 keV are readily apparent. Panel (b) 
shows the residuals after the two Fe emission lines at 6.4 keV and 7.0 keV have been fitted. Panel 
(c) shows the residuals after the addition of a neutral reflection component with R=l,  a weak red- 
wing to the Fe line is apparent below 6.4 keV. Panel (d) shows the residuals after the addition of 
a disk emission line component to model the red-wing. A strong absorption line, probably due to 
Fe XXV, is present at 6.7 keV. 
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Fig. 4.- Contour plot showing the 68%, 90%, 99% and 99.9% confidence levels of Fe K a  line 
flux versus line width for the 6.4 keV emission line. The line appears to be resolved by EPIC-pn 
with a width of 52 f 10 eV, corresponding to a FWHM velocity width of - 5600 km s-I. Ths 
places the bulk of the Fe line emission at the broad line region or even further away from the 
nucleus. 
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Fig. 5.- The 3.5-12 keV EPIC-pn spectrum (upper panel) and datdmodel residuals (lower panel) 
to a fit with a two zone warm absorber, modeled by the XSTAR photoionization code. The two 
narrow emission lines at 6.4 keV and 7.0 keV have been included in the fit, but the broad red-wing 
to the iron Ka! emission line is no longer required once the absorber has been correctly modeled. 
A high ionization absorber, with ionization parameter log 5 = 2.9 f 0.3 erg cm s-l and a column 
density of NH = (4.6 f 0.8) x cm-2 reproduces the energy and depth of the 6.7 keV absorption 
line rather well. 
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Fig. 6.- The broad-band 0.3-12 keV EPIC-pn spectrum and datdmodel residuals (lower panel). 
The spectrum has been modeled with a multiple component warm absorber, including the 2 lower 
ionization components (with log - 0.3 and log e - 2.4) modeled by (Blustin et al. 2002) to 
the RGS data, as well as the high ionization component (with log - 2.9) responsible for the Fe 
K-shell absorption. This model fits the overall X-ray spectrum of NGC 3783 well, the remaining 
datdmodel residuals are at the 5% level or smaller. 
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7.- The 3.5-12 keV EPIC-pn spectrum and residuals after removing the two zone warm 
absorber in Figure 5 ,  plotted in order to illustrate the effect of the ionized absorber on the hard 
X-ray spectrum. The deep absorption line at 6.7 keV is clearly apparent in the residuals, whilst an 
broad dip is present in the between 7 and 9 keV, due to iron K-shell edge absorption. There is also 
significant opacity in the absorber below 6 keV, whch effects any modeling of the broad iron line. 
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Fig. 8.- The high ionization warm absorber model, fitted to the 3.5-12 keV EPIC-pn spectrum, 
but normalized to a r = 2 power-law continuum for ease of illustration only. As well as the strong 
Fe Ka, absorption lines that are present near 6.7 keV, the model introduces significant continuum 
curvature between 3-6 keV, due to recovery from high ionisation K-shell edges and lines from Mg, 
Si, S, as well as L-shell Fe below 3 keV. Additional opacity is also between 7-9 keV, due to a blend 
of high ionization Fe K-shell edges and higher series absorption lines, such as Fe KB. 
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Fig. 9.- The datdmodel ratio residuals over the iron K-shell band from the two orbits of XMM- 
Newton EPIC-pn data. The first orbit is plotted in greyscale, the second orbit in black. The narrow 
6.4 and 7.0 keV emission lines have been modeled in the spectrum. The 6.7 keV absorption line 
is clearly present in the second orbit of data, but is very weak in the first orbit, indicating that this 
high ionization absorption component is variable on short timescales, of the order lo5 s. 
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Fig. 10.- Fits to the iron K-shell absorption line in the two seperate XMM-Newton orbits. (a) The 
data (crosses) and absorption line model (solid line), convolved through the EPIC-pn response, to 
the XMM-Newton spectrum during the 2nd orbit. Here, the absorption line is strongest when the 
continuum flux is higher. It can be modeled with a high ionization absorber, where the Fe xxv res- 
onance (1s + 2p) line is the strongest line present. (b) The first orbit of data, when the continuum 
flux is lower and best fit model overlaid (solid grey line). The absorption line is weaker during the 
1st orbit, which is consistent with a lower overall ionization for the iron K band absorber. (c) The 
relative strengths of the absorption lines from Fe xxv to Fe xx (right to left) from the two models 
shown above; the lines correspond to observed energies of 6.64 keV, 6.59 keV (doublet), 6.565 
keV, 6.52 keV, 6.48 keV and 6.44 keV, or rest (lab) frame energies of 6.70 keV, 6.66 keV, 6.63 
keV, 6.58 keV, 6.54 keV and 6.50 keV respectively. The high ionization model (for the 2nd orbit) 
is plotted in black, the lower ionization model (for the 1st orbit) in greyscale. Thus the higher 
flux 2nd orbit may be dominated by the higher ionization ions (Fe XXIII-XXV), whilst the lower 
ionization species (Fe XX-XXIII) are more dominant in the lower flux 1st orbit spectrum. 
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Table 1. Table of iron line spectral fits. 

P Ea ab EWE X'ld0.f , Fit r Line 

1. 

2. 

3. 

4. 

1.62 f 0.01 Fe Ka  6.39 f 0.01 57 f 8 123 f 6 1589/1287 1.4 x lo-' 
Fe KpLFe XXVI 7.00 f 0.02 53 f 23 34 f 5 

1.62 f 0.01 Fe Ka 6.39 f 0.01 57 f 8 123 f 6 1591/1287 1.15 x lo-' 
Fe XXVI 6.96f0.02 57e 2 0 f 5  
Fe Kp 7. 06e 57e 1 6e 

1.73 fO.O1 Fe Ka 6.39 f 0.01 47 f 8 109 f 5 1492/1287 5.6 x lo-' 
Fe XXVI 7.00f0.04 47e 1 2 f 4  
Fe KO 7.06e 47e 14e 

1.73 f 0.01 Fe K a  6.40 f 0.01 53 f 8 107 f 8 1324/1282 2.0 x lo-' 
Fe XXVI 6.98f0.04 53e 1 7 f 5  
Fe KP 7.06e ' 53e 14e 

Fe xxv absn 6.67 f 0.04 loe 17 f 5 
Diskline 6.4e 58f 12 

aEnergy of the Fe l i e  in units of keV. 

la width of the line in eV. 

CEquivalent width of the line in eV. 

dNull hypothesis probability that the fit statistic is acceptable. 

eParameter value is fixed, or tied to that of another fit parameter 

Note. - Fit 1 consists of a power-law plus 2 Gaussian emission lines. Fit 2 is a power-law plus 
3 Gaussian emission lines. Fit 3 is a power-law plus 3 Gaussian emission lines and neutral reflection 
component (the XSPEC model PEXRAV with R = 1). Fit 4 consists of a power-law, plus three Gaussian 
emission lines, a neutral reflection component, a disk emission line (the DISKLINE model in xspec), as 
well as a Gaussian shaped absorption line. 


